في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:
Un número trascendente, también llamado número trascendental, es un número que no es raíz de ninguna ecuación algebraica[1] con coeficientes enteros no todos nulos.[2] Un número real trascendente no es un número algebraico, pues no es solución de ninguna ecuación algebraica con coeficientes racionales. Tampoco es número racional, ya que estos resuelven ecuaciones algebraicas de primer grado; al ser real y no ser racional, necesariamente es un número irracional.[3] En este sentido, número trascendente es antónimo de número algebraico. La definición no proviene de una simple relación algebraica, sino que se define como una propiedad fundamental de las matemáticas.[2] Los números trascendentes más conocidos son π y e.
En general, si tenemos dos cuerpos y de forma que el segundo es extensión del primero, diremos que es trascendente sobre si no existe ningún polinomio del que es raíz ().[4]
El conjunto de números algebraicos es numerable, mientras el conjunto de números reales es no numerable; por lo tanto, el conjunto de números trascendentes es también no numerable.[5] O tiene la potencia del continuo.
Sin embargo, existen muy pocos números trascendentes conocidos, y demostrar que un número es trascendente puede ser extremadamente difícil. Por ejemplo, todavía no se sabe si la constante de Euler () lo es, siendo
cuando .
De hecho, ni siquiera se sabe si es racional o irracional.
La propiedad de normalidad de un número puede contribuir a demostrar si es trascendente o no.